(Note: The following proof was copied verbatim from the answer of MSE user Alex Francisco.)
First, note that for any coprime a, b \in \mathbb{N}_+, there is I(ab) = I(a) I(b).
Suppose there is an even number n = 2^k \cdot l, where k \geq 1 and l odd, such that I(n) = \frac{p + 2}{p}.
Case 1: k \geq 2. Then \frac{p + 2}{p} = I(2^k \cdot l) = I(2^k) I(l) \geq I(2^k) = \frac{2^{k + 1} - 1}{2^k} = 2 - \frac{1}{2^k} \geq \frac{7}{4},
which implies 4(p + 2) \geq 7p, contradictory to p \geq 3.
Case 2: k = 1 and p \geq 5. Then, analogously, \frac{p + 2}{p} \geq 2 - \frac{1}{2^k} = \frac{3}{2},
which implies 2(p + 2) \geq 3p, contradictory to p \geq 5.
Case 3: k = 1 and p = 3. Then \frac{5}{3} = I(2l) = \frac{3}{2} I(l) \Longrightarrow I(l) = \frac{10}{9}.
If l has an odd prime factor q < 10, suppose q^m \mathbin{\|} l, then \frac{10}{9} = I(l) = I(q^m) I\left( \frac{l}{q^m} \right) \geq I(q^m) = \frac{q^{m + 1} - 1}{q^m (q - 1)}\\ = 1 + \frac{1}{q - 1}\frac{q^m - 1}{q^m} \geq 1 + \frac{1}{q - 1}\frac{q - 1}{q} = 1 + \frac{1}{q} > \frac{10}{9},
a contradiction. Now suppose the prime factorization of l is l = \prod_{i = 1}^s p_i^{a_i},
then p_i \geq 11. Because \frac{10}{9} = I(l) = \prod_{i = 1}^s \frac{1 + p_i + \cdots + p_i^{a_i}}{p_i^{a_i}},
then 9 \prod_{i = 1}^s \sum_{j = 0}^{a_i} p_i^j = 10 \prod_{i = 1}^s p_i^{a_i} \Longrightarrow \left. 9 \,\middle|\, \prod_{i = 1}^s p_i^{a_i} \right.,
contradictory to p_i \geq 11.
Therefore, there does not exist an even positive integer n such that I(n) = \frac{p + 2}{p}.
Suppose there is an even number n = 2^k \cdot l, where k \geq 1 and l odd, such that I(n) = \frac{p + 2}{p}.
Case 1: k \geq 2. Then \frac{p + 2}{p} = I(2^k \cdot l) = I(2^k) I(l) \geq I(2^k) = \frac{2^{k + 1} - 1}{2^k} = 2 - \frac{1}{2^k} \geq \frac{7}{4},
which implies 4(p + 2) \geq 7p, contradictory to p \geq 3.
Case 2: k = 1 and p \geq 5. Then, analogously, \frac{p + 2}{p} \geq 2 - \frac{1}{2^k} = \frac{3}{2},
which implies 2(p + 2) \geq 3p, contradictory to p \geq 5.
Case 3: k = 1 and p = 3. Then \frac{5}{3} = I(2l) = \frac{3}{2} I(l) \Longrightarrow I(l) = \frac{10}{9}.
If l has an odd prime factor q < 10, suppose q^m \mathbin{\|} l, then \frac{10}{9} = I(l) = I(q^m) I\left( \frac{l}{q^m} \right) \geq I(q^m) = \frac{q^{m + 1} - 1}{q^m (q - 1)}\\ = 1 + \frac{1}{q - 1}\frac{q^m - 1}{q^m} \geq 1 + \frac{1}{q - 1}\frac{q - 1}{q} = 1 + \frac{1}{q} > \frac{10}{9},
a contradiction. Now suppose the prime factorization of l is l = \prod_{i = 1}^s p_i^{a_i},
then p_i \geq 11. Because \frac{10}{9} = I(l) = \prod_{i = 1}^s \frac{1 + p_i + \cdots + p_i^{a_i}}{p_i^{a_i}},
then 9 \prod_{i = 1}^s \sum_{j = 0}^{a_i} p_i^j = 10 \prod_{i = 1}^s p_i^{a_i} \Longrightarrow \left. 9 \,\middle|\, \prod_{i = 1}^s p_i^{a_i} \right.,
contradictory to p_i \geq 11.
Therefore, there does not exist an even positive integer n such that I(n) = \frac{p + 2}{p}.