Processing math: 100%

Search This Blog

15.10.19

Expressing \gcd(m^2, \sigma(m^2)) as a linear combination of m^2 and \sigma(m^2) when p^k m^2 is an odd perfect number with special prime p

It turns out that it is possible to express \gcd(m^2, \sigma(m^2)) as an integral linear combination of m^2 and \sigma(m^2), in terms of p alone, when p^k m^2 is an odd perfect number with special/Euler prime p.

To begin with, write
\gcd(m^2,\sigma(m^2))=\frac{\sigma(m^2)}{p^k}=\frac{D(m^2)}{\sigma(p^{k-1})}=\frac{(2m^2 - \sigma(m^2))(p-1)}{p^k - 1}.

Now, using the identity
\frac{A}{B}=\frac{C}{D}=\frac{A-C}{B-D},
where B \neq 0, D \neq 0, and B \neq D, we obtain
\gcd(m^2,\sigma(m^2))=\frac{\sigma(m^2)-(2m^2 - \sigma(m^2))(p-1)}{p^k - (p^k - 1)},
from which we get
\gcd(m^2,\sigma(m^2))=\sigma(m^2)-(2m^2 - \sigma(m^2))(p-1)=2m^2 - p(2m^2 - \sigma(m^2))
= 2m^2 - pD(m^2),
or equivalently,
\gcd(m^2,\sigma(m^2))=2(1 - p)m^2  + p\sigma(m^2).