Let $N = q^k n^2$ be an odd perfect number with special prime $q$.
From this paper in NNTDM, we have the equation
$$i(q) := \frac{\sigma(n^2)}{q^k}=\frac{2n^2}{\sigma(q^k)}=\frac{D(n^2)}{\sigma(q^{k-1})}=\gcd\left(n^2,\sigma(n^2)\right).$$
In particular, we know that the index $i(q)$ is an integer greater than $5$ by a result of Dris and Luca.
Here is a conditional proof (copied from MathOverflow) that
$$\gcd(\sigma(q^k),\sigma(n^2)) = i(q) = \gcd(n^2, \sigma(n^2)).$$
First, since we have
$$\sigma(q^k)\sigma(n^2) = \sigma({q^k}{n^2}) = \sigma(N) = 2N = 2{q^k}{n^2}$$
we obtain
$$\sigma(q^k) = \frac{2 q^k n^2}{\sigma(n^2)} = \frac{2n^2}{\sigma(n^2)/q^k} = \frac{2n^2}{i(q)}$$
and
$$\sigma(n^2) = \frac{2 q^k n^2}{\sigma(q^k)} = {q^k}\cdot\bigg(\frac{2n^2}{\sigma(q^k)}\bigg) = {q^k}{i(q)},$$
so that we get
$$\gcd\left(\sigma(q^k),\sigma(n^2)\right) = \gcd\bigg(\frac{2n^2}{i(q)}, {q^k}{i(q)}\bigg).$$
Now, since $\gcd(q, n) = \gcd(q^k, 2n^2) = 1$ and $i(q)$ is odd, we get
$$\gcd\bigg(\frac{2n^2}{i(q)}, {q^k}{i(q)}\bigg) = \gcd\bigg(\frac{n^2}{i(q)}, i(q)\bigg).$$
Hence, we conclude that $G:=\gcd(\sigma(q^k),\sigma(n^2))=\gcd\bigg({n^2}/{i(q)}, i(q)\bigg)$.
This is equivalent to
$$G = \frac{1}{i(q)}\cdot\gcd\bigg(n^2, (i(q))^2\bigg) = \frac{1}{i(q)}\cdot\bigg(\gcd(n, i(q))\bigg)^2.$$
But we also have
$$\gcd(n, i(q)) = \gcd\bigg(n, \gcd(n^2, \sigma(n^2))\bigg)$$
$$= \gcd\bigg(\sigma(n^2), \gcd(n, n^2)\bigg) = \gcd(n, \sigma(n^2)).$$
Consequently, we obtain
In particular, we get
$$G = \frac{1}{i(q)}\cdot\bigg(\gcd(n, \sigma(n^2))\bigg)^2 = \frac{\bigg(\gcd(n, \sigma(n^2))\bigg)^2}{\gcd(n^2, \sigma(n^2))}.$$
In particular, we get
$$\gcd(\sigma(q^k), \sigma(n^2)) = i(q) = \gcd(n^2, \sigma(n^2)),$$
if and only if $\gcd(n^2, \sigma(n^2)) = \gcd(n, \sigma(n^2))$.
if and only if $\gcd(n^2, \sigma(n^2)) = \gcd(n, \sigma(n^2))$.